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—1_

Algebraic equations

Many of the techniques of perturbation analysis can be introduced in
the simple setting of algebraic equations. By starting with some partic-
ularly easy algebraic equations, three quadratics, we can benefit from
the luxury of the existence of exact answers, taking useful hints from
them to overcome difficulties.

1.1 Iteration and expansion

We start with the equation for x which contains the parameter ¢,
2+exr—1=0

This has exact solutions

r = —Jet /1+ 1

which can be expanded for small € as

. = {+1—%6+§62—ﬁe4+0(66)

—1—de— 3 + te* + O(%)
These binomial expansions converge if |¢] < 2.
More important than converging, the truncated series give a good

approximation if € is small. The first few terms give a result within 3%
of the exact result if

lef < 0.05 0.5 1.2 16
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The last 1.6 being not too far from the convergence boundary. Alterna-
tively for the fixed value of e = 0.1 the first few terms give

r ~ 1.0
0.95
0.95125
0.95124921...
exact = 0.95124922...

Often the numerical summation of these short expansions involves less
computer time than the evaluation of the exact answer with its costly
surds.

We started by finding the exact solution of the quadratic equation and
then we expanded the exact solution. In most problems, however, it is
not possible to find the exact solution. We must therefore develop tech-
niques which first make the approximations and then, only afterwards,
involve a calculation. There are two distinct methods of first approx-
imating and then calculating, the iterative method and the expansion
method. Each method has its own advantages and disadvantages.

Tterative method

We start with the iterative method, because it is a method which is often
overlooked although it has much to offer.

The first step of the iterative method is to find a rearrangement of
the original equation which will become the basis of an iterative pro-
cess. This first step involves a certain amount of inspiration which must
therefore count as a major drawback of the method. A suitable re-
arrangement of our present quadratic is

r = V1 —ex

Any solution of the original equation is a solution of this rearrangement

and vice versa.
Working with just the positive root, we thus adopt the iterative pro-

Cess

Tnt1 = v 1 — €T,

The iterative process needs a starting point, the value of the root when
€=0,1y=1.
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Making the first iteration, we find
T, = Vl—e
which can be expanded in a binomial series
1 1

= 1—31e_L1e2_ L34 ...
Ty = 1— 56— ge T6€ +

Looking at the exact answer, we see that the €2 and higher terms are
erroneous. We therefore truncate the series for £, after the second term:

g, = 1—ledo
Proceeding to the next iteration, we find
T, = y/1—€(l-1¢)

which can be expanded, this time retaining only terms up to €:

z, = 1-le(1-3e)—32(1+---)"+--

— 1 1,2

= 1- 56 + §€ + .-

We note that the €2 term is now correct after two iterations. Iterating
again, we find

T3 = \/1—6(1—%€+§62)
= 1-le(1-le+ie?)—Lef(1-Le+-- )2 —Lel(1—- )%+

= 1—%6+%62+0€3+"'

It is clear that progressively more work is required to obtain the higher
order terms by the iterative method. The method also has the unde-
sirable feature that in the early iterations it gives erroneous values to
the higher terms. One can only check that a term is correct by making
one more iteration, which of course is usually convincing but no rigorous
proof (but see §1.5).

Ezpansion method

The first step of the expansion method is to set ¢ = 0 and find the
unperturbed roots z = £1. Then one poses an expansion about one of
these roots, say £ = +1, expanding in powers of ¢, i.e.

z(e) = 1+ez; +2zy+ T3+
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This expansion is formally substituted into the governing quadratic
equation.
1 + €2z, + e(zi+2z,) + SQ2zzy+2z5) +---
+ e + €z, + €z, +.--
-1
=0
Here one ignores potential difficulties in making the substitution such
as the limitations in multiplying series term by term. The coefficients of
the powers of € on the two sides of the equation are now compared.

At €°: 1-1=0
This level is satisfied automatically because we started the expansion
from the correct value z =1 at € = 0.

At €l 2z, +1 =0 ie. ¢y =—-1

At €2 2 +2z,+2, =0 e zy=1
Here the previously determined value of x; has been used.

At €% 22,2y +2z;+2, = 0 ie z,=0
again using the previously determined values of z, and z,.

The expansion method is much easier than the iterative method when
working to higher orders. To use the expansion method, however, it is

necessary to assume that the result can be expanded in powers of ¢ and
that the formal substitution and associated manipulations are permitted.

Exercise 1.1. Find four terms in the expansion of the root near
z = —1, using both the iterative and expansion methods.

1.2 Singular perturbations and rescaling

In this section we study the quadratic
ex?+r~-1=10

If € = 0 there is just one root, at £ = 1, whereas when ¢ # 0 there are two
roots. This is an example of a singular perturbation problem, in which
the limit point ¢ = 0 differs in an important way from the approach
to the limit ¢ — 0. Interesting problems are often singular. Problems
which are not singular are said to be regular.

To resolve the paradox of the behaviour of the second root we take the
exact solutions to the quadratic and expand them for small € (convergent



1.2 Singular perturbations and rescaling 5

if |e] < ). The two roots are

{ 1—e+2e2 -5+
r =

—1/e—1+¢—2e* 453 +---

Thus the singular second root evaporates off to 2 = oo in the limit € = 0.

Iterative method

To set up an iterative process for the singular root we argue as follows.
In order to retain the second solution of the governing quadratic, it is
necessary to keep the ex? term as a main term rather than as a small
correction. Thus z must be large. Hence at leading order the —1 term
in the équation will be negligible when compared with the x term, i.e.

ez’ +z = 0 with solution = ~ —1/e

Hence we are led to the rearrangement of the quadratic

1 1
r = ——4—
€  ex
and the iterative process
1 1
Tt STt
n
with a starting point 5 = —1/e.
Iterating once we find
T, = —e1-1
and iterating again
1
_ -1
S g
= —el-l+4+e+---

A further iteration is needed to obtain the €2 term correctly.

Ezpansion method

The expansion method can be applied to the singular root by posing a
power series in € which starts with an ¢! term instead of the usual €°.
The way in which one determines the correct starting point is left until
later in this section. Thus substituting

z(€) = €tz +xytex;+ -
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into the governing quadratic yields
elz?, 4+ 20_zy + €(2z_yz +xd) 4
ez, + =z, + exy+---
-1
= 0
Comparing coefficients of ¢”, we have
at e7L: 2 +z_, = 0, le.z_; =-1lor0
The root z_, = 0 leads to the regular root, so we ignore it.
At €0 22_yzy+zy—1 = 0, ie. zy=-1
At €l 2z +ad+z, =0, ez =1
where at each stage the values of previously determined z, have been
used.

Rescaling in the expansion method

Instead of starting the expansion with the unusual ¢! term, a very
useful idea for singular problems is to rescale the variables before making
the expansion. Thus introducing the rescaling

z = X/e
into the originally singular equation for  produces an equation for X,
X?+X-e=0

which is regular. Thus the problem of finding the correct starting point
for the expansion can be viewed as a problem of finding a suitable rescal-
ing to regularise the singular problem.

There is a simple procedure to find all useful rescalings. First one
poses a general rescaling with a scaling factor 6(¢),

z = 6X

in which one insists that X is strictly of order unity as ¢ — 0. Unfortu-
nately the standard notation X = O(1) does not describe this limitation
on X, because O(1) permits X to be vanishingly small as ¢ — 0. Thus
we are forced to adopt the less familiar notation X = ord(1) to stand
for X 1s strictly of order unity as e — 0.

Substituting the general rescaling into the governing quadratic equa-
tion gives

€62X?2+6X -1 =0
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We now consider the dominant balance of this equation for § of different
magnitudes, starting the search for sensible rescalings with § very small
and progressing to § very large.

e 6« 1. Iféis very small, then the left hand side of the equation is

e62X?2+6X -1 = small +small—1

This cannot balance the zero on the right hand side, and so a small § is
an unacceptable rescaling. As 6 is increased, it is the X term which first
breaks the domination of the 1 term and this occurs when é = 1. Hence
the range of the unacceptable rescalings when § is too small is § < 1,
as declared above.

e &=1. The left hand side of the equation is now

82X?2+6X -1 = small+X -1

This can balance the zero on the right hand side to produce the regular
root X =1+ small.

o 1« é<«el. If §is a little larger than unity, then the X term
dominates the left hand side of the equation

(e62X? +6X —1)/6 = small+ X + small

This can balance the zero divided by é on the right hand side, but only
if X = 0+ small which violates the restriction that X is strictly of order
unity and not smaller. This rescaling is therefore unacceptable. As 6
increases well beyond unity, it is the X2 term which breaks the domi-
nation of the X term when § = e~!. Hence this range of unacceptable
rescalings is 1 < § < €71, as declared above.

e &=¢"1. The left hand side of the equation divided by €§? is

(e62X2 +6X —1)/e6? = X2+ X + small

This can balance the zero divided by €62 on the right hand side with
either X = —1 + small which yields the singular root, or X = 0 + small
which is not permitted because it violates our restriction X = ord(1).

o ¢! « §. Finally when § is very large, the left hand side of the
quadratic divided by €62 is

(e6°X% 46X —1)/e62 = X2+ small + small

This can only balance the right hand side if X = 0+small, which violates
X = ord(1). Thus e~} < § is a range of unacceptable rescalings.

The systematic search of all possible rescalings has thus yielded § = 1
for the regular root and § = ¢! for the singular root as the only possible
rescalings with X = ord(1).
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Exercise 1.2. Find the rescalings for the roots of
e+ 4+2r4+e =0

and thence find two terms in the approximation for each root.

1.3 Non-integral powers

In this section we study the quadratic
(Ql-e)z?-2c+1 =0

This innocent looking equation gives an unexpected surprise.

We start this time with the expansion method. Setting ¢ = 0 we
have the unperturbed solution £ = 1, a double root. One learns from
experience that a multiple root is a sign of imminent danger. Proceeding
however in the usual manner, we pose the expansion in powers of €

z(e) = 1+ex, +€zy+---

Substituting into the governing equation

1 + €z, + €(2z,+2z2) +--
- € - %2z, 4o
-2 - €z, - €2z, +---
+1
=0
and comparing coefficients of €™ we find
At €°: 1-24+1 =0

which is automatically satisfied because we started correctly perturbing
about z = 1.

At €l: 2z, -1-2z;, =0
This cannot be satisfied with any value of z,, except in some sense with
:L'l = o0.

To find the cause of the difficulty we look at the exact solution of the
quadratic
l1+e?
1—¢

Taking just the positive root and expanding for small €, we find

z =

g =1+t +eted +.-.
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Thus we see that we should have expanded in powers of €% rather than
powers of €. This is what the infinite value that we found above for z,
was hinting: in a certain sense €% = ¢ x 00. In retrospect we could also
have foreseen that an O(e?) change in the variable would be required
to produce an O(e) change in a function at its minimum. Returning to
the quadratic, we now pose an expansion in powers of the unexpected
non-integral powers

z(e) = 1+e%x% +ex, +6%.’L’% +---
Substituting this into the governing equation
1 + 6%233% + €(2z, +2%) + e%(2x% +2zywy) +-o
2

- € - 6%2(5% +e
-2 - 6%2.’1,'1 — €2z - 6%21'; +.e
2 2
+1
=0
Comparing coefficients of €2 we find that as usual
at €°: 1-24+1=0

is automatically satisfied and that
at €2: 21%—2:12% =0
This is satisfied by all values of z 3 It is a little disturbing that z 3 has
not been determined at the €% level, but we proceed to the next level.
At €l 2x1+x2%—1—2x1=0
So zy = %1 and z, is not determined at this level. Continuing to the
next level
at €2: 2z +2zy2) — 221 — 223 = 0
So z; =1 for both roots of z;, while z3 is not determined.

The delay in determining Ty at the €*¥* level rather than at the €%
level means that a little extra work is required. There is also the slight
worry that at the following level it will not be possible to satisfy the
equation and the whole solution will therefore collapse, as happened at
the € level in the erroneous expansion in powers of e.

Finding the expansion sequence

Having rescued the expansion method by looking at the exact answer,
there remains the problem of how one determines the expansion sequence
when the exact answer is not available.
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First one poses a general expansion
z(e) = 1+ 6 (e)xy +8,(e)zy + -+
where one requires
1> 6,(e) > b8,(e)>... and z,z,,... =ord(l) as e — 0
Substituting into the governing quadratic yields
14 26,2, + 6222 + 26,15 + 26,8,7,T4 + 6323 + - -
— € —2e6,7, — €63T3 — 2€6,Ty + - -
—2—26,z, — 2049 + - -+
+1
=0

While the relative magnitude of some of the terms is clear, e.g. 26,7, >
6272 and 26,z, > 26,x, because 1 > 6, and 6; > §, respectively, there

is considerable uncertainty about the ordering of other terms, e.g. be-
tween 6222 and 26,z,. Removing the cancelling terms one is left with

8222 4 26,642, 75 + 62z2 +---
—€ — 26,71 — eéfxf —2€byzq+ - =0
Using 1 > 6; > 6, one can see that the leading order terms from the

two lines are 6222 and —e. Therefore there are three possible leading
order balances:

either 6222 =0 if é2>e
or 8212 —e=0 if &=c¢
or —e=0 if &<e

Clearly the last option is unacceptable and so too is the first because we
require z; = ord(1). Hence we conclude that

o, =¢ and T, =%l

Removing these two balancing terms leaves as leading order terms
26,6,z 2, and —2e8,x,. Repeating the above arguments

either 2€26,x,7, =0 if ;>
or 267 8,2, —26%331 =0 if bf,=c¢
or —26%.’1,‘1 =0 i <

The only acceptable option is

,=¢ and z,=1 (for both z; roots)
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Because the above determination of the expansion sequence involves
some messy intermediate details, in practice one would take two at-
tempts at the problem to determine §, and 6,. First one would sub-
stitute £ = 1 + 6,z; and find §, = e?. Then one would substitute
=1+ e%xl + 6,7, and find 6, = €. Splitting the problem up into
stages, one has to consider at each stage less terms of undetermined
magnitude.

Iterative method

Finally the superiority of the iterative method should be noted in cases
where the expansion sequence is not known. A suitable rearrangement
of the original quadratic is

(x—1)? = ex?
which leads to the iterative process
Tpy =1+ e’i’a:n
Starting with z, = 1, the positive root gives
1
1;1 = 1 + €2
and
1
Ty = 14€3 4¢

Not only is this considerably quicker but there is also no awkward step
like the €% level in the expansion method which leaves z 1 undetermined.

Exercise 1.3. Find the first two terms of z{¢) the solution near 0 of
\/-2_sin(z+%) —l-z+42? = -Le
Exercise 1.4. Find the first two terms for all four roots of

ezt —22-z+2 =0

Exercise 1.5 (Stone). Find the first two terms for all three roots of

a: e*+22+(24+6z+1 =0
b: e +22+(2-€ez+1 =0
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1.4 Logarithms

In this section we shall find the solution as ¢ — 0 (through positive
values) of the transcendental equation

ze T = €

One root is near £ = € which is easy to obtain. The other root becomes
large as ¢ — 0 and is more difficult to find. We concentrate on this large
root. As the expansion sequence is distinctly unclear, we employ the
iterative method.

First we observe that if € is small (¢ < } is sufficient) the root must lie
between z = In(1/¢) (for which ze™® = eln(1/¢) > €) and z = 2In(1/¢)
(for which ze=® = €221n(1/¢) < €). Over this range of z, the z factor
merely doubles while the e~ factor falls by an order of magnitude from
€ to €2. Thus we can view the x factor as varying weakly and concentrate
on the rapid variation in the e~* factor. This suggests the rearrangement
of the original equation

e = =
z
leading to the iterative scheme
ZTppr = In(l/e)+Inz,

Further, from the above observations it is clear that the root must lie
quite near In(1/¢) when ¢ is small. Thus we start the iteration from

zy = In(1l/e)
Then
z; = In(l/e)+Inln(l/e) = L, + L,
where we have introduced the shorthand notation

L, = In(l/e) and L, = Inln(1/e)

L, +In [Ll <1+I3)]
Ll

L L2
_2__22+...
L, 2L%

Iterating again

Ly

= Li+Ly+

And again

- L, L, 13
T3 = L1+ln[L1(1+L1+L§ 213
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L L L2
= L .+1L o Rt R §
o 2*<L1+L% 2L3

L, L 2 L 8
1L Ly 1L .
Hpege) (o) s

L, 434D, HA- 3+
LT o 1

= Li+L,+

The expansion sequence needed by the expansion method is clearly a
tough one to guess. Moreover the iterative method produces more than
one extra term from each iteration.

The appearance of Inln(1/e) means that remarkably small values of
¢ are required to achieve a good numerical accuracy of the approximate
expressions. Usually one hopes for a tolerable agreement with ¢ < 0.5 or
at worse € < 0.1. In order for InIn(1/€) > 3 however one needs ¢ < 107°.
The table below gives the percentage errors at various e for the first five
approximations to the large root of our transcendental equation.

€ Ly  +Ly +La/I4 -3L3/L?  +Ly/L?
1071 36 12 2 4 0.03
10~3 24 3 0.02 0.04 0.04
1075 19 1 0.04 0.1 0.001

The table shows that acceptable accuracy is only achieved with many
terms of the approximation or with extremely small values of . The
table also demonstrates another common feature of expansions which
involve InIn(1/€). This is that it is unwise to split (—3LZ + L,)/L? into
two terms, because the error is made worse by the first part before it
is eventually improved by the addition of the second part (at least at
values of € not astronomically small).

Exercise 1.6. Find several terms in an approximation for the solution
of
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1.5 Convergence

The expansion method offers little opportunity of proving that an ap-
proximation converges. In straightforward problems the form of the nt*
term will be clear, e.g. €®, and so one can be satisfied that the expansion
is consistent. Just occasionally one can write down the problem for the
general n*? term, find a strong bound on the magnitude of the term, and
thence prove convergence of the expansion. In more difficult problems,
however, the expansion sequence will not be clear and one would have
no idea of the form of the general term. In these problems one can only
be satisfied that the expansion is consistent as far as one has proceeded.

The iterative method on the other hand provides a simple proof of
convergence. Suppose z = z, is the root of the equation

z = f(z)

where f is used in an iterative process z,,; = f(z,,). Then one iteration
will take z =z, + 6 to

flz, +6) = z,+6f'(z,) +0o(8)
if § is small. Thus one iteration will decrease the error if

flz) <1

Hence by the contraction mapping theorem, the iterative process will
converge onto the root z, if |f'(x,)] < 1 and if the iteration is started
sufficiently near to the root. (The standard theorem needs a small mod-
ification to take account of the truncation of the higher order terms
which are known to be incorrect after insufficient iterations.)

In the previous sections we had iterative schemes which converge.

In§l.l f=+1I—ex with z, ~ 1 so f'(z,) ~ —1¢
In§l.2 f=-1/e+1l/ex withz, ~—1/¢ so f'(z,) ~ —¢
In§1.3 f=1+¢%z with z, ~ 1 so f'(z,) ~ €'/?
In§l4 f=In()+In(z) withz, ~In(l) so f(z,) ~1/In(3)

The negative sign of f’ in the first two cases means that the error changes
sign and so two successive iterations must bracket the answer. Also from
the magnitude of f’ one can work out how many terms will be correct
after a given number of iterations.
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1.6 Eigenvalue problems

In this section we consider the eigenvalue problem for the eigenvalue A
associated with the eigenvector x

Ax +eB(x) = Ax

In order for this to qualify as an algebraic equation, A ought to be
a matrix. The techniques of this section, however, can be applied to
any linear operator A with adequate compactness. As eB(x) is a small
perturbation, there is no need for B(x) to be linear.

We look for the perturbed eigensolution near to a given unperturbed
eigensolution with eigenvalue a and associated eigenvector e:

Ae = aqe

If the matrix A is not symmetric, its transpose will have a different
eigenvector el associated with the same eigenvalue:

efA = qet

Initially we restrict attention to the case where a is a single root with
only one independent eigenvector e. Then el is orthogonal to all the
other eigenvectors of A.

In the standard way we pose an expansion in powers of ¢ starting from
the unperturbed eigensolution

x(e) = e + ex; + €x, +--
AMe) = a + e + Xy F---

Substituting into the governing equation and comparing coefficients of
€™ produces

at €: Ae = ae which is automatically satisfied
at €':  Ax; + B(e) = ax; + \je
It is useful to rearrange the last equation as
(A—a)x; = Aje—B(e)

Now the left hand side of this equation can have no component in the
direction of e, because for all x;

el -[(A-a)x] = ef(A-a)]-x, = (a—a)e’ x, = 0

using the eigenvector property of ef. Thus there can exist no solution of
the equation for x; unless the right hand side of the equation also has
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no component in the direction of e, i.e.
ef-[\,e—B(e)] =0
Thus we have found the first perturbation of the eigenvalue
et . B(e)
ef.e
Note that this expression shows that if B(e) is nonlinear then the eigen-
value is not independent of the magnitude of the eigenvector.

We now can return to the equation for x; and substitute the expression
for A, to yield

A =

et -B(e)

ot e ©
where the notation B(e), has been introduced for that part of B(e)
perpendicular to e. Now that the right hand side has no component in
the direction of e it is possible to invert (A — a) to obtain a solution for
x;, although this solution is not unique because it is possible to add an
arbitrary multiple of e to x; without changing (4 —a)x;. Thus with &,
an arbitrary scalar

(A-a)x; = -B(e) + = -Ble),

xl = "(A - a)_lB(E)J_ + kle

where the restricted inverse (4 —a)~! does exist in the space orthogonal
to e. If the complete eigendecomposition of A is known, then x; can be
represented as a sum over all the other eigenvectors (/)
_ ' et . B(e)
X = ) (@ - ad) (D) - e®)

e + ke

This completes the first order perturbation.

Second order perturbation
The second order perturbation is governed by

Here €B, is the ord(e) change from B(e) to B(e + ex;). If B is linear,

then B, = Bx,. If B is nonlinear, then B, = x, - B’(e) where B’ is the

first derivative of B. Rearranging the equation for x, we have
(A-a)xy, = e+ A x, -B;

As in the problem for x,, we must require that the right hand side has no
component in the direction of e. This leads to the second perturbation
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in the eigenvalue
el - (B, - A;x)
el-e
and thence, with k, an arbitrary scalar, the second perturbation in the
eigenvector is

Ay =

We see in the expressions for A, and x, that it would have been conve-
nient to remove the non-uniqueness in x; by requiring it to have no com-
ponent in the direction of the unperturbed eigenvector, i.e. ef - x; =0.
In some problems, however, there are more pressing claims than this
convenient normalisation.

If the complete eigendecomposition of A is known, and also if B is
linear, then our result for A, can be written in the more familiar form

A _ ’ (ef . Be(]))(e(])"' . Be)
: Z]’ (a —a) (et .eld) (et -e)

Multiple roots

Suppose that the eigenvalue a of A is associated with more than one

independent, non-degenerate eigenvector, e;,e,,... ,e,. We must now
consider perturbing around a general eigenvector in the eigenspace

x = Yo o€ + €x; +--

A= a + €A+

Substituting into the governing equation and comparing coefficients of
€" produces at €l

(A-a)x; = "12?:1 o€ — B(E?zl a;e;)

In this case of multiple roots, the left hand side can have no component in
the eigenspace. Thus requiring the right hand side to have no component
in each of the independent directions e; produces

Ay = ei'B(Eiaiei)/(eI'el)

Ma, = e -B(Y ,ae)/(el-e,)
These equations are a new eigenvalue problem in the eigenspace of A to
find the eigenvalue A, and eigenvector . If B is linear there will exist n
eigenvalues and, except in some degenerate cases, n associated indepen-
dent eigenvectors. If B is nonlinear, it is possible that no eigensolutions
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exist. In such cases the original eigenproblem will have no perturbed
eigensolutions near the eigenspace of the unperturbed problem.

Degenerate roots

Degenerate multiple roots can lead to an expansion in non-integral pow-
ers of €. Consider the n-degenerate eigensolution in the Jordan Normal

Form
Ae, = ae;
Ae, = ae, + e
Ae, = ae, + c,e,_;
Then if the perturbationeB(e,) has a component in the direction e, say
eB,,, an expansion is needed in powers of e/n e
x(e) = e, + €V%zie, + e/ rie i+ +em Vg e 4o
Me) = a + /7 4+ -
with solution
Ty = A /cy Ty=M[cyes, ... T, =ATTV/cpeg.. .0,

and A, = (cycz...c,B,)Y™

If the components of eB(e,) vanish in the directions of e, ;,€;,5,.-. €,
then an expansion is needed in powers of el/k,

Exercise 1.7. Find the second order perturbations of the eigenvalues

of the matrix
E, 0 + 0 w
0 E, —w 0

for small w and for large w. Consider to first order the 3 x 3 version of
this problem.

Exercise 1.8. Find the first order perturbations of the eigenvalues of
the differential equation

y'+ly+e =0
in0<z <, withy(0)=y(wr)=0forn=1, 2 and 3.



